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Abstract

This Dataset Brief describes the computational prediction of protein structures for

the ctenophore Mnemiopsis leidyi. Here, we report the proteome-scale generation of

15,333 protein structure predictions using AlphaFold, as well as an updated imple-

mentation of publicly available search, manipulation, and visualization tools for these

protein structure predictions through theMnemiopsisGenome Project Portal (https://

research.nhgri.nih.gov/mnemiopsis). The utility of these predictions is demonstrated

by highlighting comparisons to experimentally determined structures for the light-

sensitive protein mnemiopsin 1 and the ionotropic glutamate receptor (iGluR). The

application of these novel protein structure prediction methods will serve to further

position non-bilaterian species such asMnemiopsis as powerful model systems for the

study of early animal evolution and human health.
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The question of how proteins fold based on their amino acid sequences

has been a long-standing challenge in the field of structural biology

and, by extension, to the study of key biological questions in fields

such as developmental and evolutionary biology. Historically, tertiary

protein structures have been experimentally determined using labor-

intensive techniques such as x-ray crystallography, nuclear magnetic

resonance (NMR), and cryo-electronmicroscopy (CryoEM) [1]. Further,

many large proteins are simply too large to be analyzed by standard

NMR approaches or they may be too disordered, making them poor

candidates for study via traditional x-ray crystallographic methods [2,

3]. While breakthroughs in genomic technologies have led to the gen-

eration of chromosome-length sequencing data for an ever-increasing

number of biologically informative species, the gap between sequence-

based and structure-based data continues to grow, hampering the abil-

ity of investigators to look beyond the traditional set of model organ-

isms to answer keyquestions in humanbiology andhumanhealth [4–5].
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Fortunately, recent developments in artificial intelligence (AI) are

advancing the application of neural network and machine learning

methodologies to the analysis of whole-genome sequencing data, par-

ticularly through the use of predictivemethods such asAlphaFold [1–3,

6–7] to generate structures for the proteins encoded within these

genomes. That said, the significant amount of computational power

required to generate these structural data continues to pose a sig-

nificant roadblock to large-scale studies. Our access to NIH’s Biowulf

supercomputing resource has allowed us to overcome this barrier and

apply these newmethodologies to our whole-genome sequencing data

of the ctenophoreMnemiopsis leidyi [8]. Given that ctenophore species

represent the earliest-branching extant animals, they are evolution-

arily informative and provide important insights into the evolution of

animal multicellularity [9–12]. Our structural predictions, which con-

sumed over 58,000 GPU hours, have produced a valuable dataset

that has the potential to advance evolutionary, developmental, and
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F IGURE 1 Predicted local distance difference test (pLDDT) scores for AlphaFold predictions of theMnemiopsis proteome. (A) Scatterplot of
average pLDDT scores for each of the 15,333 predicted protein models. Each point in the graphic represents the score for a single structure
prediction. Approximately half of all predictions were above the 70% confidence threshold: 8.9% Very High, with pLDDT> 90 (dark blue); 41.7%
Confident, with pLDDT between 70 and 90 (light blue). The remaining protein models fell below the 70% confidence threshold (30.1% Low, with
pLDDT between 50 and 70; 19.3% Very Low, with pLDDT< 50). (B) Distribution of averagemodel confidence as a function of protein length.
Protein lengths are binned in incremental ranges of 200 amino acids.Within each group, the number of models falling into each confidence level
are color-coded by pLDDT score. Higher confidence levels decrease as protein sequence length increases.

comparative genomic studies, as well as further positioning these non-

traditional animal models as tractable models for studying important

classes of human disease [4].

The full set of 16,548Mnemiopsis protein models were downloaded

from the Mnemiopsis Genome Project (MGP) Portal (https://research.

nhgri.nih.gov/mnemiopsis) [13], filtering out 1212 possible gene joins

from the initial gene prediction set. The remaining 15,336 protein

sequences were then analyzed using AlphaFold version 2.3.1, result-

ing in the successful prediction of 15,333 protein structures covering

99.98% of theMnemiopsis proteome. Each individual analysis produces

a predicted local distance difference test (pLDDT) score that indicates,

on a scale of 0 to 100, howwell a predicted structure would agree with

an experimentally determined structure [7], with higher scores indi-

cating that the protein backbone is correctly predicted and that side

chains are oriented properly. Here, the predicted structure confidence

score distribution ranged from24.7 to 98.2 (Figure 1A). Approximately

half of all structure predictionswere above the70%confidence thresh-

old (8.9%Very High, with a pLDDT> 90; 41.7%Confident, with a pLDDT
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F IGURE 2 Visualization and accuracy assessment of the bioluminescent protein mnemiopsin 1. (A) Searches for specific predicted protein
structures can be performed by following the View Protein Structures link in the sidebar of theMGP Portal. Once a specificMnemiopsis protein is
selected, a newwindow depicting the predicted protein structure will appear. Users can zoom, rotate, stylize, and download the protein models.
Shown here is the structure ofML085715b, the bioluminescent protein mnemiopsin 1.Models are color-coded based on per-residuemodel
confidence scores (pLDDTs) determined by AlphaFold. In this case, most residues are indicated in dark blue to reflect a Very High pLDDT (96.06 on
a scale of 100). (B) Foldseek-generated superimposition of the solved structure of the calcium-activated photoprotein mnemiopsis 1 (PDB:5VP3,
yellow) with the AlphaFold-predicted structure of mnemiopsin photoprotein 1ML085715b (blue).

between 70 and 90). The remaining protein models fell below the 70%

confidence threshold (30.1% Low, with a pLDDT between 50 and 70;

19.3% Very Low, with a pLDDT < 50). To determine whether proteins

having low pLDDT scores were ctenophore-specific, BLASTP searches

were performed against UniProt using the sequences of the 152 pro-

tein structures having a pLDDT ≤ 30 as the query, yielding only 12

statistically significant hits. BLASTPsearchesof the remaining140pro-

teins against the Beroe ovata protein database (http://ryanlab.whitney.

ufl.edu/bovadb/) produced 133 statistically significant hits, suggesting

that these proteins are indeed ctenophore-specific (Table S1).

In general, and as one would expect, as the length of a protein

increases, so too does the computational time required to predict its

structure. This was evident during our study, as the three proteins

for which we were not able to successfully generate a protein struc-

ture were all greater than 5700 amino acids in length. Further, the

relative percentages of pLDDT classified as Very High or Confident

trends lower as the length of the protein increases (Figure 1B). Unsur-

prisingly, we also noted difficulty in predicting structures for both

intrinsically disordered proteins (IDPs) and structured proteins having

intrinsically disordered regions (IDPRs). On this point, Ruff et al. [14]

previously reported that roughly 30% of the residues across predicted

human protein structures tend to have pLDDT scores below 50, con-

sistent with disorder estimates for the entire human proteome [15].

Mammalian proteomes generally contain 35%–45% IDPRs, making it
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F IGURE 3 Comparison of the experimentally determined iGluR protein structure with a sequence-based AlphaFold prediction. (A) Domain
architecture of theMnemiopsis iGluR protein. ATD, amino-terminal domain; CTD, cytoplasmic C-terminal domain; LBD, ligand binding domain; TM,
transmembrane regions. (B) The AlphaFold-predicted structure of the full-lengthML032222a iGluR protein. The inset shows the superimposition
of the experimentally determined structure of 4YKJ onto the prediction (RMSD= 0.924). Colors shown in the structures correspond to the colors
used in the domain architecture schematic in Panel A. Structures were aligned and colored using PyMOL [28].

notoriously difficult to successfully predict high-confidence protein

structures [14–16]. Accordingly, the proteome-scale structural predic-

tions reportedhere should beusedalongside additional functional data

when considering future experimental design.

The protein structure predictions generated in the course of this

study have been integrated into the publicly available Mnemiopsis

Genome Project Portal and can be accessed through the View Pro-

tein Structures link in the left sidebar. Predicted protein structures can

be visualized through a local implementation of Mol* Viewer [17] by

searching for aMnemiopsis protein identifier (e.g., ML085715b). Once

the viewer shown in Figure 2A launches, users can zoom in and out,

rotate, stylize, and download the structural models. Each predicted

protein structuremodel is color-codedbasedon its pLDDTscore.Click-

ing directly on a structure highlights the selected region in pink, with

informationona selected aminoacid (including its pLDDTscore) shown

in the box below the structure.

We assessed the accuracy of our AlphaFold-predicted struc-

tures using Foldseek which, rather than using a traditional (and
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computationally costly) superimposition approach, instead relies

upon a structural alphabet based on tertiary interactions to deduce

structural similarity and, by extension, assign putative protein function

[18, 19]. The first of these is the calcium-activated photoprotein mne-

miopsin1, forwhicha crystal structure at2.5Å resolutionwas reported

by Molakarimi et al. (PDB:5VP3) [20], the top sequence-based hit of

this protein to the sequences in ourMnemiopsisdatabase (ML085715b,

mnemiopsin photoprotein 1). Our AlphaFold-generated PDB file for

thisMnemiopsis photoprotein was then submitted to the Foldseek web

server (https://search.foldseek.com) as a query against the PDB100

structural database using the program’s 3Di/AA local alignment mode.

Not surprisingly, as AlphaFold employs PDB data as a training set,

the top hit to PDB100 was to the 5VP3 structure referenced above

(100% identity, 5.94 × 10−27 E-value). The Foldseek-generated super-

imposition of the Mnemiopsis photoprotein with the experimentally

determined photoprotein structure is illustrated in Figure 2B, showing

a highly similar structural alignment with limited dissociation at the

protein ends. Foldseek uses a templatemodeling (TM) score to indicate

the degree of topological similarity between the two structures,

a 0–1 scale where 1 represents a perfect match between the two

structures being compared [21]. Here, the two compared structures

had an almost perfect TM score (0.96). Coupled with the very low

root-mean-square deviation (RMSD) of 1.15 between these two

structures reported by Foldseek, as well as the Very High AlphaFold

pLDDT average confidence score (96.06), AlphaFold has accurately

predicted the protein structure of mnemiopsin 1 over its entire length.

The ionotropic glutamate receptors (iGluRs) are fast-acting ligand-

gated ion channel receptors that have shown a remarkable evolu-

tionary expansion. In humans, these proteins mediate fast excitatory

synaptic transmission in the central nervous system and are located in

both neuronal and non-neuronal cells [22]. The overall iGluR domain

architecture consists of an amino-terminal domain, a ligand-binding

domain (LBD) that is bisected by a transmembrane domain contain-

ing a pore-loop ion channel, a second transmembrane domain, and

a carboxy-terminal domain (Figure 3A). The initial annotation of the

Mnemiopsis genome identified 16 candidate iGluR genes [8]. Subse-

quently, Alberstein et al. [23] crystallized the LBD for one such gene

product, ML032222a, then experimentally determined its structure

by x-ray diffraction [23]. This structure was used to establish the

molecular mechanism for the selective binding of glycine (rather than

glutamate) via a ctenophore-specific interdomain salt bridge, as well

as identify structural similarities to N-methyl-D-aspartate (NMDA)

receptors that play an important role in excitatory neurotransmission,

defects in which have been implicated in numerous neurodegener-

ative and cognitive disorders [24–26]. Similar to the approach used

in CASP assessments [27], the AlphaFold-generated PDB file based

on the sequence of ML032222a was used as the Foldseek query to

search the PDB100 structural database using the 3Di/AA local align-

ment mode. As expected, the top hits were to the corresponding LBD

domain within the solved x-ray structures of iGluR in Mnemiopsis:

4YKJ, 5CMB, 4YKK, and 5CMC, all with E-values below 1 × 10−38.

Using AlphaFold, we were able to generate a full-length predicted

structure for ML032222a with a Confident pLDDT score of 84.23

(Figure 3B). PyMOL (28) was then used to superimpose the structure

of the highest-scoring experimentally determined structural variant

(4YKJ) onto the AlphaFold structure prediction for ML032222a, as

illustrated in the inset of Figure 3B; a detailed superimposition is pro-

vided in Figure S1. A significant degree of structural similarity can

be seen between the experimentally determined LBD and the same

region as predicted by AlphaFold (RMSD = 0.924). This comparison of

a partially solved protein structure to a full-length structure predic-

tion provides an illustrative example of how computationally predicted

structures can build upon our current knowledge of protein structure,

especially in caseswhere the labor-intensivenatureof solving aprotein

structure experimentally may be prohibitive.

Taken together, the whole-genome sequencing data available for

this emerging model organism, along with the structural dataset

generated in the course of this study, provide a powerful example of

how experimental design can move from sequence to structure—and,

by extension, to function—through the application of accessible compu-

tational techniques such as AlphaFold. This study serves as amodel for

extending the utility of whole-genome sequence data being generated

for an ever-increasing number of organisms at whole-chromosome

scale, data that can form the foundation for future experimental

studies across the spectrum of biomedical science.
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