Sponges lack ParaHox genes

Claudia C. Pastrana\(^{1,2}\), Melissa B. DeBiasse\(^{1,3}\), Joseph F. Ryan\(^{1,3*}\)

\(^1\) Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
\(^2\) Department of Biology, University of Miami, Miami, Florida, United States of America
\(^3\) Department of Biology, University of Florida, Gainesville, Florida, United States of America

*Corresponding author: Joseph Ryan

Author Note: Claudia C. Pastrana and Melissa B. DeBiasse contributed equally to this work.

E-mail addresses:
cabreraclau96@gmail.com
melissa.debiasse@gmail.com
joseph.ryan@whitney.ufl.edu

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Addressing the origin of axial-patterning machinery is essential for understanding the evolution of animal form. Historically, sponges, a lineage that branched off early in animal evolution, were thought to lack Hox and ParaHox genes, suggesting that these critical axial-patterning genes arose after sponges diverged. However, a recent study has challenged this long-held doctrine by claiming to identify ParaHox genes (Cdx family) in two calcareous sponge species, *Sycon ciliatum* and *Leucosolenia complicata*. We reanalyzed the main datasets in this paper and analyzed an additional dataset that expanded the number of bilaterians represented and removed outgroup homeodomains. As in the previous study, our neighbor-joining analyses of the original datasets recovered a clade that included sponge and Cdx genes, while Bayesian analyses placed these sponge genes within the NKL subclass of homeodomains. Unlike the original study, only one of our two maximum-likelihood analyses was congruent with Cdx genes in sponges. Our analyses of our additional dataset led to the sponge genes consistently being placed within the NKL subclass of homeodomains regardless of method or model. Our results show more support for these sponge genes belonging to the NKL subclass, and therefore imply that Hox and ParaHox genes arose after Porifera diverged from the rest of animals.
Introduction

Addressing the mechanistic origins of axial-patterning processes of modern animals is essential for a broader understanding of the evolution of animal form. Hox and ParaHox genes are widely recognized as playing a pivotal role in patterning the primary body axis of most animals (Carroll 2005; Slack, et al. 1993), but how and when these transcription factors arose is not well understood. As one of the first lineages to branch away from other animals, sponges provide important insight into the early evolution of the developmental toolkit (Degnan, et al. 2009), which is critical for understanding the evolution of primary body axes in animals (Ryan and Baxevanis 2007).

Homeobox genes are a large set of highly conserved transcription factors present in the vast majority of eukaryotic lineages (de Mendoza, et al. 2013; Duboule 1995). Hox and ParaHox genes, along with Hox-like genes (Evx, Meox, Mnx, Gbx), make up the HOXL subclass of the ANTP class of homeoboxes (Holland, et al. 2007). The NKL subclass makes up the rest of the ANTP class, one of the 11 classes of the homeobox superfamily (Holland, et al. 2007). Hox and ParaHox genes have been identified in almost all animal lineages, but have not been identified in Ctenophora (comb jellies) (Ryan, et al. 2013) or, until recently, Porifera (sponges) (Larroux, et al. 2007; Srivastava, et al. 2010). Given that Ctenophora and Porifera successively branched off from the rest of animals very early in animal evolution (e.g., Dunn, et al. 2008; Ryan, et al. 2013; Shen, et al. 2017; Simion, et al. 2017; Whelan, et al. 2017), it was thought that Hox and ParaHox genes arose in the stem ancestor of Parahoxozoa (a clade consisting of Placozoa, Cnidaria, and Bilateria; Ryan, et al. 2010).

Recently, Fortunato and colleagues (2014) reported to have identified a ParaHox gene (Cdx) in the calcareous sponges *Sycon ciliatum* and *Leucosolenia complicata*. The evidence supporting
this claim was not robust to the method of inference (i.e., maximum-likelihood, neighbor joining, and Bayesian methods applied to the same dataset did not place these sponge genes in the same clade). This is problematic given that the robustness of methods is an indicator of the phylogenetic signal in a dataset and the adequacy of that signal to determine the true phylogeny (Penny, et al. 1992). Another concern was that though the results produced a clade containing bilaterian Cdx and sponge candidate Cdx genes, this clade fell outside of the larger Hox/ParaHox clade (Fortunato et al. 2014 Figure 1; Extended Figure 1). This is unusual as most studies recover monophyletic Hox and ParaHox clades (e.g., Banerjee-Basu and Baxevanis 2001; Chiori, et al. 2009; Zwarycz, et al. 2015). Interestingly, in examples where Hox/Parahox is not monophyletic, it is often because a non-Hox/ParaHox gene is placed in a clade with Cdx genes (Holland, et al. 2007; Takatori, et al. 2008) (e.g., Holland et al. 2007; Takatori et al. 2008), but not always (Larroux, et al. 2007).

Several factors may have contributed to the lack of robustness in the results supporting Cdx genes in sponges, such as the absence of Spiralia, which make up a large proportion of the diversity within Bilateria. Another potentially confounding issue is the use of previously undescribed short motifs to subsample the main datasets for additional analyses. These subsampled datasets contained only homeodomains that included two motifs named YIS and YIT (three amino-acids starting at position 25 in the homeodomain) (Fortunato, et al. 2014). This criterion led to paraphyletic sampling of homeodomain families given that Cdx was the only HOXL subclass gene in these datasets (Fortunato et al. 2014 Extended Figures 3-5). Sampling based on the YIT/YIS motifs also resulted in the exclusion of the Ankx homeodomain family, with which the putative sponge Cdx genes formed a clade in the reported Bayesian analyses (Fortunato, et al. 2014). However, because the YIS and YIT motifs have not been previously
described in the literature, it is unclear whether their usage to construct alternative datasets if justified.

The ghost locus hypothesis was used as auxiliary support for the claims of a Cdx gene in sponges (Fortunato, et al. 2014). The ghost locus hypothesis asserts that if in a genomic locus devoid of Hox, there exists a significant number of non-Hox genes with bilaterian orthologs in close proximity to Hox clusters, then this locus once contained Hox genes that were subsequently lost (Ramos, et al. 2012). The ghost locus hypothesis also applies to ParaHox genes and loci as well. Fortunato et al. (2014) showed that the Sycon ciliatum Cdx candidate is in the “neighborhood” of four genes that are orthologous to genes linked to ParaHox loci in humans. However, given that only 14 genes on this scaffold had clear human orthologs, there were insufficient data to test the statistical significance of this hypothesis (Fortunato et al. 2014).

We hypothesize that the finding of a Cdx gene in Porifera is sensitive to methods, models, and taxon sampling. To test this hypothesis, we reexamine the datasets from Fortunato et al. (2014) and construct an alternative dataset that includes several additional taxa. We analyze all of these datasets using a range of tree-construction methodologies and models.

Materials and Methods

Phylotocol, transparency, and reproducibility

To maximize transparency and avoid confirmation bias, we constructed a phylotocol (DeBiasse and Ryan 2018), which outlined our planned phylogenetic analyses prior to the start of the project (Supplementary File 1). For complete transparency, this document was published on GitHub before the analyses began (05/28/2017). We followed the protocol as outlined, and made six minor adjustments that we justified and publicly documented prior to executing the
proposed changes. The phylotocel, alignments, trees, and commands used in these analyses are available at: https://github.com/josephryan/2018-Pastrana_etal_SpongeParaHoxAnalyses.

Repeating and expanding analyses on original datasets

We repeated the analyses as performed in Fortunato et al. (2014) using two of their original datasets. The first dataset contained 150 homeodomains and was used to infer Fortunato’s Figure 1; we refer to this dataset as F150 (Fig. 1). The second dataset contained 259 homeodomains and was used to infer the tree in Fortunato’s Extended Figure 1; we refer to this dataset as F259 (Fig. 1). These datasets are available as FASTA files in the Supplementary Information of this paper and at the GitHub link above. We used Prottest v3.0 (Abascal, et al. 2005) to confirm choice of model for the F150 and F259 datasets and then performed NJ analyses with Phylip v3.696 (Felsenstein 1993), maximum-likelihood (ML) analyses with PhyML v3.0 (Guindon, et al. 2010), and Bayesian analyses with MrBayes v3.3.6 (Ronquist, et al. 2012).

For new analyses of the original datasets we performed NJ analyses using Phylip v3.696 with the following models: JTT, PMB, PAM, and Kimura, as implemented in the Protdist program. We performed ML analyses using RAxML v8.2.10 (Stamatakis 2014) under the following models: PROTGAMMALG, PROTGAMMAJTT, PROTGAMMAWAG, and PROTGAMMAAUTO with 100 bootstraps. We chose RAxML over PhyML, which was used in Fortunato et al. 2014, for these new analyses based on reports of their accuracy in a recent review of ML methods (see Figure 2 of Zhou, et al. 2017). For these ML analyses we used 5 starting parsimony trees and 5 random starting trees and chose the one with the highest likelihood as determined by RAxML. In all cases, the likelihood values of our best RAxML trees
were higher than our PhyML trees. We conducted Bayesian analyses using MrBayes v3.3.6 under the following models: LG, WAG, JTT, and MIXED with gamma-distributed rates across sites.

Expanding taxon sampling

We constructed an alternative 375-homeodomain dataset (referred to as P375; Fig. 1 and Table S1). We used HomeoDB (Zhong and Holland 2011) to obtain the complete set of HOXL and NKL sequences for human (*Homo sapiens*), beetle (*Tribolium castaneum*), amphioxus (*Branchiostoma floridae*), and fruitfly (*Drosophila melanogaster*). We assembled the complete set of HOXL and NKL homeodomains for the marine polychaete *Capitella teleta*, the Pacific oyster *Crassostrea gigas*, and the starlet anemone *Nematostella vectensis* from Zwarycz et al. (2015). Finally, we included the putative Cdx genes for *Sycon ciliatum* and *Leucosolenia complicata* from Fortunato et al. (2014). This dataset is available as a FASTA file in the Supplementary Information of this paper and at the GitHub link above. We performed NJ, ML, and Bayesian analyses on this alternative dataset as described above.

Hypothesis testing

We used the approximately unbiased (AU) test (Shimodaira 2002) as implemented in CONSEL v1.20 (Shimodaira and Hasegawa 2001) and the Swofford-Olsen-Waddell-Hillis test (SOWH) (Goldman, et al. 2000) as implemented in sowhat v0.36 (Church, et al. 2015) to compare the following competing hypotheses (Table 1): (1) The sponge Cdx candidates fall in a clade with Cdx genes ((LcoCdx, SciCdx, BflCdx, TcaCad1, TcaCad2), all other sequences), (2) The sponge Cdx candidates fall in a clade with all Hox and ParaHox genes ((all Hox and
ParaHox, LcoCdx, SciCdx), all other sequences), and (3) Hox and ParaHox genes form a clade that does not include sponge Cdx candidates ((all Hox and ParaHox), LcoCdx, SciCdx, all other sequences). The best-fit model, LG, was used for the AU tests, while JTT was used for the SOWH tests, as LG is not available in the current version of sowhat.

Constrained ML analysis of the F259 homeodomain dataset

We ran a constrained ML analysis of the F259 dataset using RAxML v8.2.11. For this analysis we used the ‘-g’ option and introduced a constraint tree that required the bilaterian sequences BflCdx, TcaCad1, TcaCad2 and the sponge sequences LcoCdx, SciCdx to form a clade (this clades was recovered in Extended Data Figure 1 of Fortunato et al. (2014)). The ‘-#10’ option was used to run 10 distinct analyses from 10 separate starting trees. The full command line, constraint tree, and output of this analysis are available at the GitHub link above.

Results

Replication of Fortunato et al. (2014) analyses

The original study (Fortunato et al. 2014) included analyses of two datasets. One consisted of 150 homeodomains (herein called F150) and another consisting of 259 homeodomains (herein called F259). The authors performed the following analyses on the F150 and F259 datasets: (1) NJ with the JTT model, (2) ML with the LG model, and (3) Bayesian with the LG model. We performed the ML analyses in PhyML, as did Fortuato et al. (2014), and in RAxML. The PhyML trees had lower likelihood scores than the trees estimated in RAxML and we therefore report the RAxML trees here and make the PhyML trees available at the GitHub link above. In five of the six Fortunato et al. (2014) analyses that we repeated, we recovered the
same results as Fortunato (Fig. 2); our NJ analyses of both datasets (Fig. 3A, D) and our ML analysis of the F150 dataset (Fig. 2B) produced a clade that included the sponge candidate Cdx genes with the bilaterian Cdx genes, while our Bayesian analyses of both datasets failed to recover this clade, instead recovering the putative sponge Cdx genes in a clade with the Branchiostoma Ankx homeodomain within the larger NKL subclass (Fig. 3C, F). Unlike in Fortunato et al. (2014), our ML analyses of the F259 dataset did not produce a clade that included both sponge and Cdx genes (Fig. 3E). Instead, like the results of our Bayesian analyses, these sponge genes were recovered within a clade that included the Branchiostoma Ankx homeodomain within the larger NKL subclass.

We did not have access to the treefile generated from the ML analysis of the F259 dataset in Fortunato et al. (2014), so we were unable to compare the likelihood of that tree with our best tree. To test whether a more likely tree with the sponge-Cdx clade existed, we conducted 10 additional ML analyses of the F259 dataset where we constrained the putative sponge Cdx genes to form a clade with bilaterian Cdx genes. The likelihood score of the best constrained tree (-14657.885041) was suboptimal to the likelihood score of our best unconstrained analysis of the same dataset (-14643.142355). An AU-test comparing these two topologies showed that the differences between the topologies were not significant ($p = 0.367$). These files associated with this analysis are available at the GitHub link above.

Model sensitivity

To test whether the results reported in Fortunato et al. (2014) were sensitive to model choice, we ran NJ, ML, and Bayesian analyses of the F150 and F259 datasets under alternative models where fit was suboptimal, but closer to optimal than other available models. As in the
analyses with the most optimal model (JTT; Fig. 3A), NJ analyses of the F150 dataset with PAM, PMB and Kimura produced a clade that included both the putative sponge Cdx and bilaterian Cdx homeodomains, albeit situated within a larger NKL clade, making Hox/ParaHox paraphyletic (Fig. S1). Likewise, as we found in our NJ analyses of the F259 dataset under JTT, the PMB and Kimura models produced the same clade of putative sponge Cdx and bilaterian Cdx homeodomains (Fig. S2). However, the NJ analysis of the F259 dataset under PAM produced a clade that included the putative sponge Cdx homeodomains with the *Branchiostoma* Ankx homeodomain within the larger NKL subclass (Fig. S2). These results suggest that the NJ analyses of the F259 dataset were sensitive to the models that we tested while the NJ analyses of the F150 dataset were not.

Phylogenetic analysis of an alternative dataset

As the focus of this study was to test whether Cdx genes exist in sponges, it was important to expand the number of taxa that include *bona fide* Cdx genes and less important to include taxa that lacked these genes. Therefore, we created an alternative dataset consisting of 375 homeodomains (herein referred to as P375) that unlike the previous study, included homeodomains from *Homo sapiens*, *Drosophila melanogaster*, *Capitella teleta*, and *Crassostrea gigas*, and did not include sequences from *Mnemiopsis leidyi* (present in F259), *Amphimedon queenslandica* (present in F150 and F259), or *Trichoplax adhaerens* (present in F259) (Fig. 1). This set included the two putative Cdx genes from *Sycon cilatum* and *Leucosolenia complicata*, but did not include other homeodomains from these sponges. As in the Fortunato et al. (2014) alignments, we included *Branchiostoma floridae*, *Tribolium castaneum*, and *Nematostella vectensis* (F259 only). Unlike Fortunato et al. (2014), which included PRD-class outgroups for
both F150 and F259, this alternative dataset consisted of only ANTP-class sequences, as specifying the root of the ANTP class was unnecessary to the goals of our study.

We performed the same NJ, ML, and Bayesian analyses on the P375 dataset as were performed on the F150 and F259 datasets and found that this alternative dataset produced consistent results as to the position of the sponge candidate Cdx homeodomains. In all trees estimated with the P375 dataset, the sponge sequences formed a clade with Ankx within the larger NKL subclass clade (Fig. 3G-I, Fig. S3).

Hypothesis testing

We used the AU test to compare relevant hypotheses about the placement of sponge putative Cdx genes. The three hypotheses we tested were: (1) the sponge candidate Cdx genes form a clade with all other Cdx genes, (2) the sponge candidate Cdx genes form a clade with all other Cdx genes inside the Hox/ParaHox clade, and (3) Hox and ParaHox genes form a clade that excludes the sponge candidate Cdx genes (Table 1). The first two hypotheses have both sponge candidate Cdx genes forming a clade with bilaterian Cdx genes, but the first is more lenient, not requiring the Cdx clade to fall within the greater Hox/ParaHox clade. The third hypothesis is incongruent with the first two hypotheses.

Despite the lack of support in our trees for bona fide sponge Cdx homeodomains, our hypothesis tests did not differentiate among alternative hypotheses (Table 1). For the F150 dataset, the best ML tree under the LG model was congruent with the first two constraints, so we did not conduct AU tests for these constraints. The p value of our test comparing the best tree to a monophyletic Hox/ParaHox cluster excluding the sponge candidate Cdx genes under the F150 dataset was 0.490 (Table 1). The best ML tree under the LG model for the F259 and P375
datasets included a monophyletic Hox/ParaHox cluster that excluded sponge candidate Cdx genes. When we compared the best topology for the F259 dataset to one that includes sponge candidate Cdx with bilaterian Cdx genes, the p value was 0.453. The p value when we constrained this clade to the Hox/ParaHox clade was 0.230 (Table 1). Under the P375 dataset, the p value of the sponge candidate Cdx with bilaterian Cdx was 0.192 when Hox/ParaHox monophyly was optional and was 0.184 when Hox/ParaHox monophyly was enforced. We also generated comparable results using the SOWH test (Table S2). None of these results conclusively reject the alternative hypotheses that we proposed.

Discussion

Prior to Fortunato et al. (2014), it was widely accepted that sponges lacked Hox and ParaHox genes. Our re-analyses of the datasets from Fortunato et al. (2014) show that the original results are sensitive to method, model, and taxon sampling. As such, the results are insufficient to support the presence of ParaHox genes in sponges. In contrast, our analyses of an arguably more appropriate dataset consistently recover these sponge genes as NKL homeodomains regardless of method or model, suggesting that the P375 dataset is not sensitive to the models and methods that we tested. Further, the majority of phylogenetic results, including all but one of the trees from likelihood-based methods, contradict the conclusions reached in Fortunato. Considered in toto, these results suggest that the sponge Cdx candidates belong to the NKL subclass of homeoboxes.

In the majority of our trees, the sponge gene is recovered in a clade with Ankx. To date, Ankx has only been found in branchiostomids (lancelets) (Zhong and Holland 2011). It is possible, but difficult to support from a parsimony perspective, that this gene was present in the last common ancestor of sponges and lancelets and lost in all other descendant lineages. Given
that the branches leading to Ankx, the bilaterian Cdx, and the supposed sponge Cdx homeodomains are all amongst the top 10% in terms of length in our trees, a more parsimonious (albeit untested) scenario is that the placement of these sponge genes is an artifact influenced by long-branch attraction.

Phylogenetic relationships inferred from homeodomains are notoriously difficult to resolve due to low nodal support (Holland, et al. 2007). The biggest reason for this constraint is the limited number of characters (60 amino acids) in these genes. Often, there is consistency between analyses and strong support for relationships at the level of homeobox family. For example, support for the distalless clade containing homeodomains from *T. adhaerens, N. vectensis, B. floridae, T. castaneum* is 97 in our maximum-likelihood analysis of the F259 dataset (Fig. S4). However, relationships between homeobox families are typically poorly supported and inconsistent between analyses, particularly when classifying homeoboxes of non-bilaterians where homeodomains from these animals often have descended from ancestors that gave rise to multiple named homeodomain families in the bilaterian lineage. These challenges are likely involved in the inability of our hypothesis tests to distinguish among alternative topologies.

In an effort to maximize transparency, this study is one of the first to utilize phylotocol (DeBiasse and Ryan 2018). Prior to performing any analyses, we planned our experiments *a priori* and made our plan public on GitHub (https://github.com/josephryan/2017-SpongeParaHoxAnalyses). We made six revisions to this document during the course of the study and documented each of these changes in subsequent versions of the phylotocol (Supplementary File 1). Our aim was to avoid making changes based on confirmation bias; we
encourage those evaluating this study to examine these changes alongside the “work completed so far” section and judge the merits of our justifications.

Conclusion

The evidence herein casts substantial doubt on the presence of a direct ortholog of a ParaHox gene in the sponges *Sycon ciliatum* and *Leucosolenia complicata*. Our analyses show that the position of the sponge Cdx candidate genes reported in Fortunato et al. (2014) are dependent on model, methodology, and taxon-sampling employed. Our most rigorous methodology (ML and Bayesian) and our alternative dataset support sponge candidate Cdx genes as being NKL genes. As no other Hox or ParaHox gene has been positively identified in sponges or ctenophores, it suggests that ParaHox genes arose in the stem lineage of Parahoxozoa (but see Ramos, et al. 2012) and therefore, the patterning of the primary body axis of the earliest animals must have been achieved with a set of genes that did not include Hox and ParaHox genes.

Competing interests

The authors declare that no competing interests exist.

Funding

This work was supported by the National Science Foundation Research Experience for Undergraduates (REU) Program (DBI-1156528) and startup funds to Joseph Ryan from the University of Florida DSP Research Strategic Initiatives program and the Office of the Provost.

Acknowledgements
We would like to acknowledge Barbara Battelle for her 30-year leadership of the Whitney Lab REU program; this work was the product of this program. We thank Helen Piontkivska and three anonymous reviewers for many insightful comments on a previous version of this manuscript.

References

Church SH, Ryan JF, Dunn CW 2015. Automation and evaluation of the SOWH test with SOWHAT. Systematic Biology 64: 1048-1058.
Duboule D 1995. Guidebook to the homeobox genes.
Simion P, et al. 2017. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Current Biology 27: 958-967.
Figure 1. Taxon sampling for homeodomain datasets in this study. Green boxes represent taxa sampled for the Fortunato et al. 150 homeodomain dataset (F150). Blue boxes represent taxa sampled for the Fortunato et al. 259 homeodomain dataset (F259). Red boxes represent taxa sampled for the alternative 375 homeodomain dataset generated for this study (P375). Taxa with confirmed Cdx homeodomains are indicated with a solid underline, taxa with unconfirmed Cdx homeodomains are indicated with a dashed underline, and taxa that lack Cdx homeodomains are not underlined.
Figure 2. Support for three different hypotheses regarding sponge candidate Cdx genes.
The first column indicates the methodology (NJ, ML, or Bayesian) followed by the model (JTT, PAM, PMB, Kimura, LG, WAG, or mixed). Blue boxes indicate that the sponge candidate Cdx genes occurred in a clade that included bilaterian Cdx genes and that this clade was a subclade of a monophyletic Hox/ParaHox clade. Blue/grey boxes indicate that the sponge candidate Cdx genes occurred in a clade that included bilaterian Cdx genes, but that this clade was nested within a clade of NKL genes. Grey boxes indicate that the sponge candidate Cdx genes occurred in a clade with NKL genes outside of a monophyletic Hox/ParaHox clade. NJ=neighbor joining, ML=maximum likelihood. *Note: this result contrasts with the ML LG analysis of the F259 dataset reported in Fortunato et al. (2014); details of these differences are in the Methods, Results, and Discussion.
Figure 3. Summary of phylogenetic analyses for three homeodomain datasets under the optimal substitution model. Each panel includes a dash-delimited code with the first field indicating the dataset (F150, F259, or P375), the second field indicating the analysis performed (NJ, ML, or MB), and the third field indicating the optimal model used in the analysis (JTT or LG). Sponge candidate Cdx genes are in red, Hox genes are in blue, and NKL genes are in green. Triangles indicate a collapsed clade; the size of the triangle is not indicative of the size of the collapsed clade. Panels with a grid background indicate phylogenies where sponge candidate Cdx genes group with bilaterian Cdx genes. Support values for all clades are included in the supplement and GitHub. NJ=neighbor joining, ML=maximum likelihood, MB=Bayesian (MrBayes). Bfl, Branchiostoma floridae; Tca, Tribolium castaneum; Dme, Drosophila melanogaster; Lco, Leucosolenia complicata; Sci, Sycon ciliatum.
Table 1. AU tests comparing the best ML tree under the LG model for each dataset to the best tree under the stated constraint (column headers). Each p-value can be interpreted as the degree of certainty to which the best tree is more likely than the null hypothesis (column header). NA indicates that the best tree is congruent with the constraint. HD=homeodomain.